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A B S T R A C T   

Alzheimer's disease (AD) is the most common form of dementia. Single Nucleotide Polymorphisms (SNPs) are 
single nucleotide alterations that can be used as genomic markers disclosing susceptibility to complex diseases 
like AD. Epistasis has long been significant for recognizing the function of genetic pathways and the evolutionary 
dynamics of difficult genetic systems. Discovering epistasis interactions holds a vital key to personalized med
icine (PM). PM needs a better understanding of the relationship between human genetic data and complex 
diseases. In this proposed work, a deep neural network (DNN) is applied using SHapley Additive exPlanations 
(SHAP) to get top 20, 100, 300, and 500 ranking SNPs responsible for AD risk through epistasis interactions. 
Multi-locus interaction analysis is performed on these identified SNPs using Multifactor Dimensionality Reduc
tion (MDR). This constructive induction algorithm is integrated with DNN for discovering epistasis interactions 
in a computationally effective method. The proposed framework is applied to Alzheimer's Disease Neuroimaging 
Initiative (ADNI) dataset. The best accuracies are achieved using the top 500 SNPs, and the classification ac
curacies varied between 0.860 and 0.874 in the five-way interaction model. However, the classification accu
racies of 2-way, 3-way, 4-way models varied between 0.663 and 0.670, 0.718 and 0.727, and 0.793 and 0.803, 
respectively. The results revealed that the reported accuracy scores of the proposed framework outperform the 
referenced literature work. The proposed framework presents high-ranked risk genes and promising epistasis 
interactions that may help in explaining the risk of AD.   

1. Introduction 

Alzheimer's disease (AD) is a complex disorder that results in the 
degeneration of brain cells. This disease is the major cause of dementia, 
known for troubles in memory, language, problem-solving and thinking 
abilities. AD has been considered a multifactorial disorder associated 
with various risk factors like genetic factors, increasing age, injuries in 
the head, environmental factors, and vascular diseases. The underlying 
cause of pathological changes in this complex disease is still unknown. 
This complex disease is one of the top causes of death (Breijyeh and 
Karaman, 2020). 

The genetic mechanisms underlying biological traits are compli
cated, encompassing the effects of various genetic variants. Epistasis is 
the interactions between these variants (Schmalohr et al., 2018). Epis
tasis, the interaction between different genes, is a vital topic of current 
interest in complex disease genetics. The complex diseases are multiple 
sclerosis, diabetes, AD, and asthma. Epistatic describes the masking ef
fect in which a variant or allele at one locus stops the variant at another 
locus from appearing its effect. Discovering gene-gene interactions is 
vital for understanding the disease mechanism and developing person
alized medicine (Ho et al., 2019). 

Since we live in the era of big data, converting big biomedical data 
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into constructive knowledge has been one of the most difficulties in 
bioinformatics. Simultaneously, deep learning (DL) techniques play an 
important role in several fields and achieve high performance. Hence, 
using DL in bioinformatics to get insights from data is essential in recent 
research (Min et al., 2017). It is noticeable that applying DL to predicting 
and identifying individuals at risk of developing AD has recently gained 
considerable attention through its combination with biomarkers. Hence, 
DL can play an important role in clinical purposes. Deep learning can 
deal with big and deep biomedical data, which is an essential starting 
step within a personalized medicine strategy. 

DL is a kind of machine learning that is a subset of artificial intelli
gence. DL uses an artificial neural network of multiple nonlinear layers. 
The key characteristics of DL are that main features are not determined 
by human engineers, but learned from the data themselves. DL can learn 
and explore hierarchical representations of data with a growing level of 
abstraction as one of the representation learning methods (Berrar and 
Dubitzky, 2021). Deep learning allows computational models 
comprising several processing layers for learning representations of data 
with many levels of abstraction. These methods have improved the state- 
of-the-art in various domains like visual object recognition, object 
detection, speech recognition, drug discovery, and genomics (Good
fellow et al., 2016). 

The main goal of this proposed framework is to explore significant 
SNPs responsible for the disease risk through epistasis interactions. 
Discovering epistasis interactions will give essential insight into com
plex disease mechanisms and facilitate PM. This paper integrates MDR 
with DNN to discover epistasis interactions in a computationally effec
tive method. The following paper sections are organized as follows; 
Section 2 presents the medical background. Section 3 shows the litera
ture review. Section 4 explains the materials and methods. Section 5 
describes the results and discussions. Finally, Section 6 presents the 
conclusions. 

2. Medical background 

Dementia, including AD, has a vital negative effect on individuals' 
functioning, independence, and the demand for care. Dementia is one of 
the major health challenges of existing times. It places an intensive load 
on families and the community, with the expense of care often paid for 
out-of-pocket. There are massive personal, economic, and social results 
of dementia (Meyer et al., 2016). Genome-wide association studies 
(GWAS) played a vital role in detecting the associated genetic variants of 
complex diseases. A genetic variant can be existed because of an alter
ation in single nucleotide adenine (A), guanine (G), thymine (T), or 
cytosine (C) in a certain stretch of DNA (Bailey, 2007). The genetic 
variants appear throughout a person's DNA and are usually referred to as 
SNPs. GWAS concentrates on a single-locus approach that aims to 
investigate each SNP at a time and its association with disease (Niel 
et al., 2015). However, complex disorders may not have a comprehen
sible appearance. Hence, the disease could be produced by nonlinear 
interactions of genetic or environmental factors or both together (Niel 
et al., 2015). 

During the past decade, GWAS have played an important role in 
discovering genotype-phenotype associations. In GWAS analyses, ge
neticists focus on DNA polymorphism markers for detecting these as
sociations (Kim et al., 2013). SNP is one of the vital classes of genetic 
markers that allow the comparison of allelic frequencies between cases 
and controls. SNPs are examined one by one for statistical association 
with complex diseases in the standard approach (Patron et al., 2019). 
Genetic variants have independent effects on the phenotype. Hence, 
only additive effects are related to this method. This type of analysis has 
been long-established; however, results are not fascinating as expected. 
In the strategy of considering one locus at a time, only a small part of the 
genetic variance interprets the phenotype, the other part apply to 
missing heritability (Simons et al., 2018). It has been known that missing 
heritability is partly because of genetic variants presenting effects when 

they interact with one other variant or more. Epistasis is biologically 
relevant to complex diseases and refers to the combinatorial effect of the 
interaction between two or more genes. The study of genetic or epistatic 
interactions between SNPs is a topic of interest, as these interactions are 
key to understanding how genes relate functionally (Moore and Wil
liams, 2009). 

In explaining the impact of genetic factors on phenotype variation, 
epistasis interactions (non-additive genetic interactions) must be 
considered. However, there is a shortage of techniques that can effi
ciently explore such interactions. Analysis methods that permit or 
exploit the phenomenon of epistasis are obviously of increasing signif
icance in the genetic dissection of complicated diseases (Cordell, 2002). 
This paper aims to identify genetic variants that may otherwise have 
remained undiscovered by permitting epistatic interactions between 
potential disease loci. Personalized medicine, known as precision med
icine, uses the patient's genetic profile to guide decisions to tailor the 
right therapeutic strategy for the individual or to define the predispo
sition to the complex disease. Discovering epistasis interactions associ
ated with the complex disease will pave the way for PM and enhance 
personalized intervention strategies (Dunn et al., 2019). However, PM 
needs a better understanding of the disease mechanism, and its success 
depends on the accurate identification of genetic biomarkers. Unfortu
nately, detecting epistasis interactions is still under research and poorly 
understood. 

3. Literature review 

Many studies applied several methods for analyzing the individual 
effect of each SNP and detecting the significant SNPs associated with 
complex diseases. Different analysis techniques can explore genetic 
variants associated with complex diseases. A uni-variable analysis 
approach can examine the association of each SNP independently with 
the phenotype (Abd El Hamid et al., 2021). A multi-variable analysis 
approach can capture the interactions between many SNPs and better 
explain complex diseases' susceptibility (Dorani et al., 2018). Discov
ering gene-gene interactions is essential to investigate the disease 
mechanism, and discovering them is still under research. Some diseases 
like AD are caused by complex interactions among several genes known 
as epistasis interactions (Dunn et al., 2019). 

Romero-Rosales et al. (2020) applied three machine learning tech
niques that have been proved to build powerful predictive models (ge
netic algorithms, LASSO, and step-wise). The research method contains 
procedures for obtaining clinical and genotypic data, filtering data using 
quality control criteria, reducing dimensionality, analyzing and 
comparing the models. The authors used the National Institute on 
Aging—Late-Onset Alzheimer's Disease Family Study. The dataset 
comprises 5220 subjects and 620,901 SNPs. The results revealed that 
LASSO models achieved the best accuracy: 0.801, sensitivity: 0.798, and 
specificity: 0.804, respectively. However, the research gave no attention 
to exploring genetic interactions. 

Sherif et al. (2017) applied different techniques like naïve Bayes, 
Support vector machine, k-nearest neighbor, logistic regression, random 
forest, and MDR classifiers. They applied a framework to identify epis
tasis interactions and improve early AD diagnosis. They used Alz
heimer's Disease Neuroimaging Initiative (ADNI) dataset. It includes 
730,525 SNPs for 125 normal persons and 306 AD patients. MDR ach
ieved the best results compared to the other methods. The achieved 
classification accuracies of their work varied between 0.7410 and 
0.7860. However, the achieved accuracy needed to be improved for 
better investigation of the disease. 

Abd El Hamid et al. (2019) applied some techniques like sequential 
minimal optimization algorithm with different kernels, naïve Bayes 
(NB), tree augmented naïve Bayes (TAN), and K2 learning algorithms. 
The used dataset was whole-genome sequencing dataset that includes 
2,379,855 SNPs for 282 normal people, 442 mild cognitive impairment 
and 48 AD cases. The main target of that research is exploring the best 
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SNPs associated with the disease. The best results were achieved by NB 
and K2 learning algorithms with an accuracy of 98 % and 98.40 %, 
respectively. Even so, the research ignored interaction effects between 
SNPs. 

Chang et al. (2020) present GenEpi, a computational package to 
uncover epistasis interactions associated with phenotypes. That research 
aims to discover SNP interactions by building GenEpi package to reveal 
epistasis interactions associated with the phenotype using machine 
learning. They applied for their work on an AD cohort used in Alz
heimer's disease Dream Challenge. The used cohort includes 767 par
ticipants of cases and controls from the Alzheimer's Disease 
Neuroimaging Initiative (ADNI) database. The authors defined the in
teractions between two SNPs only. This study explores the capability of 
GenEpi in finding disease-related variants and epistasis interactions. 
However, that paper did not detect higher-order interactions of genes in 
their analysis. 

Several pieces of research concentrated on uni-variable analysis only 
and inspected the effect of independent SNP loci for identifying genetic 
variants associated with complex diseases like AD (Romero-Rosales 
et al., 2020; Abd El Hamid et al., 2019). However, GWAS techniques for 
detecting epistasis, the interactions between genetic variants associated 
with phenotypes are still limited. Therefore, discovering multi-locus 
interactions is essential because they may have more robust associa
tions. The main goal of this paper is to fill the notable gap in the previous 
research to discover important epistasis interactions up to fifth-order 
interactions associated with the disease. This can improve the investi
gation of the biological disease mechanism and identify significant 
biomarkers that may contribute to the success of personalized medicine 
(Xie et al., 2018). 

4. Materials and methods 

Fig. 1 demonstrates an overall block diagram of the proposed model. 
First, the dataset was obtained from ADNI database (Carrillo et al., 
2012) and went through consecutive data preprocessing steps to achieve 
significant SNPs. We used ADNI dataset because it is big and important 
dataset. ADNI is a global dataset comprises several types of data from 
study volunteers throughout their participation in the study, using a 
standard set of protocols and procedures to eliminate inconsistencies 
and help investigate mechanisms of the disease. The main goal of ADNI 
study is to support advances in AD intervention, prevention, and treat
ment through the application of new diagnostic methods. 

After completing the data preprocessing phase, DNN was applied 
using SHAP to detect top-ranking SNPs responsible for AD risk through 

epistasis interactions. To address the black-box style of the DNN, some 
techniques like SHAP can create an explanation for this complex model. 
In this paper, the global level of the model was applied based on ag
gregations of Shapley values to explain the overall workings. This phase 
aims to achieve the SHAP feature importance for DNN. The features 
were sorted by decreasing importance. Then Multi-locus interaction 
analysis was performed on these identified SNPs using MDR to discover 
important epistasis interactions. 10-fold cross-validation was used to 
evaluate the predictive accuracy of all exhaustive 2-, 3-, up to 5-SNP 
combination models. Finally, the proposed framework presents signifi
cant risk genes and epistasis interactions associated with AD. 

The main goal of this paper is to focus on only cases and controls. 
Hence, we conducted a case-control study to detect high-ranked risk 
genes and promising epistasis interactions that may help better under
stand the disease etiology. 

4.1. Dataset 

The used dataset was obtained from Alzheimer's Disease Neuro
imaging Initiative (ADNI) database (Carrillo et al., 2012). It contained 
total genotypes for 431 individuals. These individuals were 127 normal 
individuals and 304 patients. ADNI dataset contained total genotypes of 
730,524 SNPs. 

4.2. Data preprocessing 

The data preprocessing phase is an essential phase to achieve 
meaningful results. In this work, many preprocessing steps were applied 
as follows: In the first step, the diagnostic information was added to 
identify the phenotype information for each individual as a case or 
control. Therefore, the total number of unaffected individuals was 127, 
while the number of affected individuals was 304. In the second step, 
quality control (QC) procedures were applied to the dataset to exclude 
low-quality SNPs and minimize potential false findings. QC steps were 
applied using PLINK (Purcell, 2012) as follows:  

a) People with too much missing genotyping data (10 % missing) were 
excluded (Purcell et al., 2007).  

b) SNPs with a missing genotype rate (10 % missing) were excluded 
(Purcell, 2012). Only SNPs with 90 % genotyping rate are taken into 
consideration.  

c) SNPs with minor allele frequency < 10 % were also excluded (Purcell 
et al., 2007). 

After applying QC steps, the total number of individuals is 431 (304 
cases and 127 controls). While, the number of SNPs after QC procedures 
became 530,750. In the third step, the linkage disequilibrium (LD) 
pruning phase was applied to enhance the power of complex disease 
genetic association studies. The LD pruning step was applied on the 
ADNI dataset to select Informative Markers, leaving 447,538 markers. In 
the fourth step, SNP-disease association tests (Lehne et al., 2011) were 
applied to decreasing the huge computational requirements. In this 
work, three SNP-disease association tests implemented in PLINK were 
applied. In this paper, the goal of applying independent SNP-disease 
association tests is to assess the statistical association of each of the 
447,538 SNP with the disease. 

These SNP-disease association tests are the basic association test, 
logistic model, and Fisher's exact (allelic association). First, the non- 
significant SNPs with a p-value threshold of over 0.01 were discarded. 
The p-value threshold was used as a significance level to reveal the SNP 
associations. This paper chose the important SNPs with a p-value < 0.01 
threshold because this threshold has more discriminating power than 
0.05 threshold (Wang et al., 2015). The results revealed that the total 
number of SNPs became 4383, 3863, and 3861 using the basic associ
ation test, logistic model, and Fisher's exact test, respectively. Finally, 
the intersection of the SNPs results from the applied SNP-disease Fig. 1. Proposed framework.  
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association tests are achieved using R (Bischl et al., 2016) to get 3502 
significant SNPs. The result of the obtained significant SNPs decreases 
the false-positive association with AD. However, the achieved number of 
SNP is still huge. Hence, it is important to apply feature selection 
techniques for detecting the most significant SNPs. 

4.3. Interpret deep learning model by SHAP 

Deep learning plays an important role and makes major progress in 
fixing problems that have resisted the superior attempts of the artificial 
intelligence community for several years. However, despite deep neural 
networks working successfully in several prediction tasks, their black- 
box style restricts their usage in applications demanding the model 
explanation, such as GWAS (Cui et al., 2021). With the good progression 
in interpretable neural networks, interaction effects between attributes 
can be achieved by evaluating well-principled interaction scores like 
Shapley interaction scores (Wang et al., 2019). In this paper, the deep 
learning technique was interpreted using the famous library SHapley 
Additive exPlanations (SHAP) to assign feature importance to each 
attribute. 

In this work, SHAP was used to evaluate SNPs from a deep learning 
model trained on the ADNI dataset that may contribute to the risk of AD 
through epistasis interactions. SHAP is a unified framework for inter
preting predictions used to assign each attribute an importance value for 
a certain prediction (Dickinson and Meyer, 2021). In addition, SHAP 
was used to assign a numeric measure of credit to each input attribute. 
This work created a deep learning neural network model in Python using 
Keras. Keras is a powerful open-source Python library to develop and 
evaluate deep learning models. Keras wraps the effective numerical 
computation libraries like Theano and TensorFlow and defines and 
trains neural network models. 

This proposed work used a fully connected network structure with 
three layers. Fully connected layers are established using the Dense class 
(Schwing and Urtasun, 2015). Deep learning model was applied with 
one input layer, two hidden layers (h1 and h2), and one output layer. 
The model expects rows of data with 3502 features (the input_dim =
3502 argument). The first hidden layer had 16 nodes and used the sig
moid activation function. The second hidden layer had eight nodes and 
used the sigmoid activation function. Finally, the output layer has one 
node and used the sigmoid activation function. Fig. 2 shows deep neural 
network model graph. 

DNN was used as the classification method in this work, and its 
performance is assessed using performance metrics like classification 

accuracy, precision, recall, and f1-score. After applying the DNN on the 
ADNI dataset, a robust model characterized was obtained with a clas
sification accuracy of 70.53 %, precision of 66 %, recall of 100 %, and f1- 
score of 79 %. The main idea of using SHAP feature importance is to 
detect the important features with large absolute Shapley values. It was 
applied as a global interpretability method using the function: shap. 
summary_plot (Molnar, 2020). As we need global importance, we 
average the absolute Shapley values per attribute across the data. Then, 
features are sorted in decreasing order by Shapley values. Fig. 3 presents 
the top 20 features that contribute to helping deep learning algorithms 
construct decisions. 

4.4. Multi-locus interaction analysis using MDR 

In this paper, multi-locus interaction analysis was performed on the 
identified SNPs described in the previous section using MDR for 
discovering significant epistasis interactions. MDR is designed specif
ically to detect and interpret gene-gene interactions. The key concept of 
MDR is a feature construction method that constructs a new attribute by 
pooling as genotypes from many SNPs (Wu et al., 2011). The procedure 
of describing a new feature as a function of two or more other features is 
called attribute construction (constructive induction). 

MDR concentrates on the n-dimensional array of genotypes for n 
variants and their interaction with the complex disease. As the three 
genotypes per variant, the whole number of genotype arrays is calcu
lated by 3n. Each pattern is categorized into low-risk or high-risk groups, 
relying on a threshold ratio of patient versus normal individuals carrying 
that pattern (Okazaki et al., 2021). Hence, the analysis problem is 
reduced effectively from n-dimensions to one dimension. The cross- 
validation statistical technique is applied to optimize the prediction 
accuracy of individuals categorized into patients or normal individuals. 
The outcome models are ranked depending on overall balanced accu
racy, which balances between high power and low p-value (Velez et al., 
2007). 

In a GWAS, applying an exhaustive search to detect epistasis in
teractions is computationally expensive. This computational load is a 
major problem. Furthermore, the task will be more complex for larger 
order interactions and larger markers. When the number of markers is 
huge, the number of multi-locus interactions increases. Hence, we pro
pose a novel approach combining (DNN using SHAP) and MDR methods 
to decrease some shortcomings of the MDR method by detecting the top- 

Fig. 2. A deep neural network model graph.  Fig. 3. SHAP feature importance.  
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ranking SNPs. 
Hence, this proposed framework presents many approaches for 

discovering new genes and searching for significant epistasis in
teractions associated with AD. First, A deep learning algorithm was 
applied using SHAP for generating top 20, 100, 300, and 500 ranking 
SNPs. Then, MDR was used for identifying pairwise, 3-way, 4-way, and 
5-way interactions models associated with AD. Next, searching for sig
nificant interactions models within the dataset was applied to the in
teractions of the top 20, 100, 300, and 500 rankings. Applying deep 
learning using SHAP provided rankings on the importance of SNP 
contribution to AD classification. After selecting the top 20 rankings in 
the first applied approach, these SNPs' statistical interaction analysis 
was generated to explore critical gene-gene interactions. The coding 
SNPs mapped to 11 genes which consists of known AD-related genes (6 
identified genes) and genes that have not been discovered previously 
associated with AD (5 discovered genes), as shown in Table 1. The novel 
explored genes that can be possible risk association genes with the 
disease. 

The balanced accuracy (BA) metric was used as an assessment metric 
to deal with imbalanced data. Balanced accuracy (BA) is a metric that 
can be used when one class appears much more than the other (Wu et al., 
2011). 

4.5. Evaluation criteria 

In this proposed work, the classification results of the applied deep 
learning technique were evaluated by accuracy, precision, recall, and f1- 
score to detect the best SNPs. These important SNPs were used for 
contributing to the risk of AD through epistasis interactions and un
derstanding of underlying biological mechanisms of the disease. Cross 
validation (CV) is accomplished to assess the ability of the model to 
classify and to predict a disease status. The used metric of model fit was 
BA averaged for all cross-validation experiments. It is a metric that can 
be chosen when evaluating how good a binary classifier is. BA is used 
when the classes are imbalanced, means one of the 2 classes are a lot 
more than the other class (Velez et al., 2007). 

4.6. Implementations 

The DL algorithms demand large computational operations while 
training. GPU works properly with the deep learning training. Hence, we 
used GPU in training deep learning model. Training Deep learning 
model on GPU accelerates the training process. Hence, running our 
model on GPU takes about 8 min 15 s to execute. In this proposed work, 
the used implementation tools are:  

• PLINK version 1.07 (Purcell, 2012) is an open-source whole genome 
association analysis toolset, developed to conduct a range of basic, 
large-scale analyses in a computationally effective manner.  

• R version 3.6.3 (Bischl et al., 2016)  

• Python version 3.6.5 (Pedregosa et al., 2011) is an open-source 
programming language. In this proposed framework, deep learning 
model was applied.  

• Multifactor Dimensionality Reduction (MDR) (Wu et al., 2011), 
version 3.0.2, is open-source software used to detect and characterize 
combinations of features. 

5. Results and discussions 

This paper suggests a novel MDR model using a deep learning 
technique for discovering epistasis interactions related to AD disease. 
The results revealed that this proposed framework could explore epis
tasis interactions more powerfully and enhance classification perfor
mance effectively. Table 2 shows the top 10 important pairwise models 
with their overall BA accuracy, BA model training, BA model testing, 
and p-values. The chosen metric of model fit was BA, which character
ized the average sensitivity and specificity. The results showed that the 
training accuracy and the testing accuracy close to each other. This 
shows the lowering of over-fitting and the rising of generalizability 
(Moore and Andrews, 2015). These results suggested that these two-way 
interactions are associated with AD disease. The most significant two- 
way interaction was found among non-coding SNP rs10862418 and 
non-coding rs206028 with BA accuracy overall of 0.649, BA model 
training of 0.650, BA model testing of 0.633, and a significance level of 
p-value 2.16E− 06. 

Table 3 shows the top ten significant 3-way interaction models with 
their BA accuracy overall, BA model training, BA model testing, and p- 
values. The achieved results recommended that these three-way syner
gistic effects among the three SNPs are related to the disease. The most 
significant three-way interaction was found among (SNP rs7559638 
from gene LINC01830, non-coding SNP rs10862418, and non-coding 
SNP rs5932588) with BA accuracy overall of 0.702, BA model training 
of 0.703, BA model testing 0.680, and a significance level of p-value 
8.25E− 07. 

Table 4 presents the top 10 four-way interaction models with their 
BA accuracy overall, BA model training, BA model testing, and p-values. 
The achieved results showed that these four-way interactions are related 
to AD disease. The most robust four-way interaction was found among 
SNP rs7559638 from gene LINC01830, non-coding SNP rs10862418, 
SNP rs2075831 from gene WWOX, and non-coding SNP rs5932588. 
Their BA accuracy overall, BA model training, BA model testing, and p- 
value are 0.767, 0.768, 0.712, and 3.03E− 06, respectively. 

Table 1 
Known AD association genes and unknown but potential AD association genes.  

Gene name Identified genes Discovered genes 

LINC01830  Yes 
AGBL1  Yes 
ANXA9 Yes ()  
IZUMO4  Yes 
SLC13A3  Yes 
ROBO2 Yes ()  
Near genes NR3C2 and LOC102724672 Yes ()  
LOC101929507  Yes 
TENM4 Yes ()  
DPP6 Yes ()  
HCRTR2 Yes ()   

Table 2 
The top ten pairwise interaction models (top 20 SNPs approach).  

Models Overall 
BA 

BA 
training 

BA 
testing 

p-Value 

rs10862418, rs206028  0.649  0.650  0.633 2.16E− 06 
(–, –) 
rs10862418, rs5932588  0.645  0.647  0.620 9.97E− 06 
(–, –) 
rs7532008, rs10862418  0.641  0.641  0.641 4.68E− 05 
(ANXA9, –) 
rs206028, rs5932588  0.638  0.638  0.638 0.00026 
(–, –) 
rs3910044, rs10862418  0.637  0.638  0.621 2.05E− 05 
(near genes NR3C2 and 

LOC102724672, –) 
rs10862418, rs2075831  0.637  0.637  0.637 8.11E− 05 
(–, WWOX) 
rs10155005, rs10862418  0.636  0.638  0.614 1.70E− 05 
(ROBO2, –) 
rs10862418, rs9967630  0.633  0.634  0.608 1.46E− 05 
(–, IZUMO4) 
rs2798641, rs10862418  0.631  0.631  0.627 0.00011 
(ARMC2, –) 
rs9818965, rs10862418  0.630  0.631  0.613 7.68E− 05 
(–, –)  
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Table 5 presents the top 10 five-way interaction models with their BA 
accuracy overall, BA model training, BA model testing, and p-values. 
The achieved results showed that these five-way interactions are asso
ciated with AD disease. The most robust five-way interaction was found 
among SNP rs7559638 from gene LINC01830, non-coding SNP 
rs10862418, SNP rs10852073 from gene AGBL1, non-coding SNP 
rs206028, and non-coding rs5932588. Their BA accuracy overall, BA 
model training, BA model testing, and p-value are 0.840, 0.845, 0.635, 
and 3.82E–05, respectively. 

Pathway analysis gives meaning to high-throughput biological data. 
SNPs are contextualized in biological processes through the gene(s) to 
which they were mapped. Hence, after applying SNPs rankings ap
proaches, SNPs are mapped to genes within each pathway using the 
mapping in NCBI's dbSNP database (Sherry et al., 2001). 

In this paper, 20 SNPs were ranked as the most robust SNPs using 
deep learning. First, the genes were mapped from these SNPs containing 
previously detected AD association genes and unknown but potential AD 
association genes. After that, epistasis interaction analysis was applied 
on the 20 SNPs using MDR to explore important pairwise, 3-way, 4-way, 
and 5-way interactions. The generated analysis of the 11 genes that are 

Table 3 
The top ten 3-way interaction models (top 20 SNPs approach).  

Models Overall 
BA 

BA 
training 

BA 
testing 

p-Value 

rs7559638, rs10862418, 
rs5932588  

0.702  0.703  0.680 8.25E− 07 

(LINC01830, –, –) 
rs10245002, rs11237677, 

rs10862418  
0.700  0.700  0.688 1.85E–07 

(DPP6, TENM4, –) 
rs10245002, rs10862418, 

rs206028  
0.688  0.690  0.661 1.05E–06 

(DPP6, –, –) 
rs10862418, rs10852073, 

rs206028  
0.687  0.688  0.658 1.05E–05 

(–, AGBL1, –) 
rs11237677, rs10862418, 

rs206028  
0.687  0.688  0.653 3.18E–06 

(TENM4, –, –) 
rs9967630, rs6090536, 

rs5932588  
0.687  0.688  0.660 7.26E–05 

(IZUMO4, SLC13A3, –) 
rs7559638, rs10862418, 

rs206028  
0.686  0.689  0.629 4.22E–08 

(LINC01830, –, –) 
rs10155005, rs10862418, 

rs2075831  
0.686  0.688  0.625 9.35E–05 

(ROBO2, –, WWOX) 
rs10155005, rs10862418, 

rs206028  
0.686  0.686  0.671 2.30E–05 

(ROBO2, –, –) 
rs10155005, rs10862418, 

rs5932588  
0.684  0.687  0.643 5.37E–05 

(ROBO2, –, –)  

Table 4 
The top ten 4-way interaction models (top 20 SNPs approach).  

Models Overall 
BA 

BA 
training 

BA 
testing 

p-Value 

rs7559638, rs10862418, 
rs2075831, rs5932588  

0.767  0.768  0.712 3.03E–06 

(LINC01830, –, WWOX, –) 
rs7559638, rs10862418, 

rs10852073, rs5932588  
0.758  0.764  0.661 4.46E–05 

(LINC01830, –, AGBL1, –) 
rs10155005, rs10862418, 

rs206028, rs5932588  
0.753  0.756  0.669 7.01E–05 

(ROBO2, –, –, –) 
rs7532008, rs7559638, 

rs10862418, rs5932588  
0.753  0.757  0.665 3.67E–05 

(ANXA9, LINC01830, –, –) 
rs7559638, rs10862418, 

rs206028, rs5932588  
0.752  0.756  0.659 3.70E–07 

(LINC01830, –, –, –) 
rs7559638, rs10862418, 

rs9967630, rs5932588  
0.750  0.755  0.663 9.50E–06 

(LINC01830, –, IZUMO4, –) 
rs9818965, rs2224553, 

rs10862418, rs206028  
0.750  0.755  0.641 4.93E–05 

(–, LOC101929507, –, –) 
rs10155005, rs11237677, 

rs10862418, rs206028  
0.750  0.752  0.690 1.50E–05 

(ROBO2, TENM4, –, –) 
rs3910044, rs10862418, 

rs10852073, rs5932588  
0.748  0.752  0.648 0.00157 

(near genes NR3C2 and 
LOC102724672, –, AGBL1, –) 

rs9818965, rs3910044, 
rs10862418, rs5932588  

0.748  0.752  0.630 6.73E–05 

(–, near genes NR3C2 and 
LOC102724672, –, –)  

Table 5 
The top ten 5-way interaction models (top 20 SNPs approach).  

Models Overall 
BA 

BA 
training 

BA 
testing 

p-Value 

rs7559638, rs10862418, 
rs10852073, rs206028, 
rs5932588  

0.840  0.845  0.635 3.82E–05 

(LINC01830, –, AGBL1, –, –) 
rs10155005, rs10862418, 

rs2075831, rs206028, 
rs5932588  

0.840  0.845  0.651 0.0009 

(ROBO2, –, WWOX, –, –) 
rs7532008, rs7559638, 

rs9818965, rs10852073, 
rs7052935  

0.838  0.844  0.611 0.0079 

(ANXA9, LINC01830, –, AGBL1, 
–) 

rs9818965, rs10862418, 
rs10852073, rs7052935, 
rs206028  

0.836  0.840  0.631 0.0014 

(–, –, AGBL1, –, –) 
rs7559638, rs9818965, 

rs10862418, rs10852073, 
rs206028  

0.834  0.840  0.591 0.0012 

(LINC01830, –, –, AGBL1, –) 
rs7532008, rs7559638, 

rs10862418, rs2075831, 
rs5932588  

0.833  0.838  0.658 0.0002 

(ANXA9, LINC01830, –, WWOX, 
–) 

rs7559638, rs3910044, 
rs2075831, rs6090536, 
rs5932588  

0.833  0.839  0.601 0.0110 

(LINC01830, near genes NR3C2 
and LOC102724672, WWOX, 
SLC13A3, –) 

rs7532008, rs7559638, 
rs10862418, rs9967630, 
rs5932588  

0.832  0.836  0.692 5.23E–05 

(ANXA9, LINC01830, –, IZUMO4, 
–) 

rs7559638, rs9818965, 
rs3910044, rs10852073, 
rs2075831  

0.832  0.840  0.565 0.0047 

(LINC01830, –, near genes NR3C2 
and LOC102724672, AGBL1, 
WWOX) 

rs7559638, rs10862418, 
rs2075831, rs6090536, 
rs5932588  

0.832  0.840  0.633 0.0007 

(LINC01830, –, WWOX, SLC13A3, 
–)  
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mapped from the top-ranked SNPs also recommends robust epistasis 
interactions that may help interpret the risk of the disease. 

After selecting the top 500 rankings in the last approach, these SNPs' 
statistical interaction analysis was generated to explore significant gene- 
gene interactions associated with AD. Table 6 shows the top 10 impor
tant pairwise models with their BA accuracy overall, BA model training, 
BA model testing, and p-values based on the last approach. 

Table 7 shows the top ten significant 3-way interaction models using 
MDR based on top 500 ranking SNPs. 

Table 8 shows the top ten significant 4-way interaction models using 
MDR based on top 500 ranking SNPs. 

Table 9 shows the top ten significant 5-way interaction models based 
on top 500 ranking SNPs. The best accuracies were achieved using the 
top 500 SNPs rankings approach. The most robust five-way interaction 
was found among SNP rs11691402 from gene LINC01317, SNP 
rs10758578 from gene GLIS3, SNP rs17557796 near genes ELAVL2 and 
LOC105375992, SNP rs2764808 near genes CTNNA3 and LRRTM3, and 
non-coding rs1883105. Their BA accuracy overall, BA model training, 
BA model testing, and p-value are 0.874, 0.881, 0.589, and 0.00025, 
respectively. It was shown that the ZEB2 gene is repeated with genes 
ELAVL2 and LOC105375992, as observed in Tables 8 and 9. 

The achieved results of the proposed framework outperformed the 
results reported in (Romero-Rosales et al., 2020; Sherif et al., 2017; Abd 
El Hamid et al., 2019; Chang et al., 2020). This research work was not 
limited to examining the association of each SNP independently with the 
phenotype as reported in (Romero-Rosales et al., 2020; Abd El Hamid 
et al., 2019) but also concentrated on the interaction between multiple 
SNP loci up to fifth-order interactions. In this paper, the same dataset 
(ADNI) used in (Sherif et al., 2017) was used with the proposed 
framework, and the achieved results outperformed the results reported 
in (Sherif et al., 2017). 

Chang et al. (2020) focused only on pairwise epistasis interactions 
and did not explore higher-order interactions of genes in their analysis. 
Hence, the proposed work presents considerable improvement using an 
integration of DNN and MDR over previous methods. 

Several genes mapped from the applied SNPs rankings approaches, 
including GRID2, ELAVL2, ANXA9, ROBO2, NR3C2, TENM4, DPP6, and 
HCRTR2, have been known previously related to AD disease. 

After applying SNPs rankings approaches, the results suggested novel 
genes associated with AD disease like LINC01830, AGBL1, IZUMO4, 
SLC13A3, LOC101929507, LOC105374292, NSUN7, and LINC01482. It 
was not shown that these genes are explored before, and they can be 

possible risk association genes to AD disease. Furthermore, this paper 
suggests that these novel genes may be associated with this complex 
disease since they have strong interactions with other genes, as shown in 
the previous tables. 

6. Conclusions 

In this paper, the MDR constructive induction algorithm was inte
grated with the deep learning algorithm to explore epistasis interactions 
in a computationally efficient method. It was shown that deep learning 
algorithms have been worked successfully in various biomedical domain 
tasks using large amounts of data. This paper shows a proposed frame
work using deep learning to search for epistasis interactions associated 
with the disease. The result of the higher-order SNP interactions is 
presented in the previous tables. The results showed that the presented 
framework could assign a numeric measure of credit to each input 
attribute using SHAP feature importance and improve the classification 
performance. The deep learning technique was interpreted using SHAP 
to assign feature importance to each feature and get top 20, 100, 300, 
and 500 ranking SNPs. The primary goal is to discover relevant SNPs 
responsible for AD risk through epistasis interactions. Discovering SNPs 
for predicting disease risks is vital to contribute to personalized 
medicine. 

The best remarkable interaction models associated with AD were 
detected in this work. In the top 20 rankings approach, the classification 
accuracies of five-way interaction models varied between 0.832 and 
0.840. However, the classification accuracies of two-way, three-way, 
four-way models varied between 0.630 and 0.649, 0.684 and 0.702, and 
0.747 and 0.758, respectively. In the top 500 rankings approach, the 
results have been reached to (0.860–0.874) in the five-way interaction 
model. While, the classification accuracies of 2-way, 3-way, 4-way 
models varied between 0.663 and 0.670, 0.718 and 0.727, and 0.793 

Table 6 
The top ten pairwise interaction models (top 500 SNPs approach).  

Models Overall 
BA 

BA 
training 

BA 
testing 

p-Value 

1-rs17021105, rs9927963  0.670  0.671  0.667 1.83E–07 
(GRID2, –) 
2-rs10862406, rs959144  0.670  0.670  0.667 7.40E–08 
(–, PXMP4) 
3-rs17021105, rs246718  0.670  0.670  0.662 1.04E–07 
(GRID2, –) 
4-rs17021105, rs9456815  0.669  0.669  0.666 3.02E–08 
(GRID2, PACRG) 
5-rs17021105, rs13169441  0.667  0.668  0.661 1.10E–07 
(GRID2, SAP30L-AS1) 
6-rs10862418, rs207036  0.667  0.667  0.659 1.96E–07 
(–, –) 
7-rs1925616, rs11002688  0.666  0.666  0.659 5.62E–07 
(near genes CTNNA3, LRRTM3, 

and LOC101928961, –) 
8-rs7557276, rs10862418  0.665  0.665  0.658 3.10E–07 
(CLASP1, –) 
9-rs177138, rs17021105  0.663  0.663  0.657 7.38E–08 
(FHIT, GRID2) 
10-rs17021105, rs11963648  0.663  0.663  0.659 2.48E–07 
(GRID2, PACRG)  

Table 7 
The top ten 3-way interaction models (top 500 SNPs approach).  

Models Overall 
BA 

BA 
training 

BA 
testing 

p-Value 

1-rs7557276, rs1796518, 
rs10862418  

0.727  0.729  0.660 1.85E–07 

(CLASP1, BTN2A2, –) 
2-rs6760326, rs17021105, 

rs17813753  
0.724  0.724  0.703 1.15E–09 

(LINC01873, GRID2, –) 
3-rs8056021, rs6025639, 

rs1883105  
0.721  0.723  0.670 1.48E–08 

(–, –, –) 
4-rs6760326, rs1410421, 

rs17813753  
0.720  0.721  0.685 9.06E–08 

(LINC01873, –, –) 
5-rs7557276, rs2529489, 

rs10862418  
0.720  0.721  0.693 7.84E-10 

(CLASP1, IMMP2L, –) 
6-rs242263, rs17557796, 

rs9409912  
0.720  0.721  0.676 1.92E–08 

(GJB7, near genes ELAVL2 and 
LOC105375992, 
LOC100506532) 

7-rs6760326, rs17021105, 
rs10942387  

0.718  0.719  0.710 4.38E–08 

(LINC01873, GRID2, –) 
8-rs10862418, rs933561, 

rs7230479  
0.718  0.719  0.703 2.37E–07 

(–, ZNF423, LINC01478) 
9-rs17021105, rs8056021, 

rs2205637  
0.718  0.719  0.706 1.72E–08 

(GRID2, –, –) 
10-rs17557796, rs9301365, 

rs959144  
0.718  0.721  0.669 1.34E–06 

(near genes ELAVL2 and 
LOC105375992, –, PXMP4)  
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and 0.803, respectively. 
In this proposed work, an efficient framework was proposed to 

identify epistatic interactions between all pairs of nucleotides in DNA 
sequence input. The primary target of this paper is to integrate 
constructive induction algorithm MDR with deep learning techniques to 
make the proposed framework more robust to build models for other 
complex diseases. 

In the top 20 rankings approach, there are 11 genes mapped from the 
20 SNPs containing previously detected genes and novel genes associ
ated with AD. Both types of genes (previously identified and newly 
discovered) may help investigate the risk of AD disease. There are 
several genes mapped from the applied SNPs rankings approaches (top 
20, 100, 300, 500), including previously detected AD association genes 
and unknown but potential AD association genes. This paper proposes 
LINC01830, AGBL1, IZUMO4, SLC13A3, and LOC101929507 genes are 
potentially associated with AD since they have strong interactions with 
other genes as appeared in the preceding tables. One of the most 
repeated interactions is between LINC01830/AGBL1 in models 1, 2, 4, 6, 
and 10, as observed in Table 5 (5-way). It was shown that the LINC01830 

gene is repeated with ANXA9 (LINC01830/ANXA9) in models 2, 5, and 
7, as shown in Table 5. Also, one of the most repeated interactions is 
between GRID2 and PACRG in models 4 and 10, as shown in Table 6. It 
was shown that the GRID2 gene is repeated with LINC01873 in models 2 
and 7, as observed in Table 7. 
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Table 8 
The top ten 4-way interaction models (top 500 SNPs approach).  

Models Overall 
BA 

BA 
training 

BA 
testing 

p-Value 

rs878698, rs17557796, 
rs4537681, rs206028  

0.803  0.807  0.701 4.37E–07 

(TBC1D7-LOC100130357, near 
genes ELAVL2 and 
LOC105375992, –, –) 

rs9883073, rs242263, 
rs17557796, rs9409912  

0.800  0.803  0.708 4.24E–08 

(–, GJB7, near genes ELAVL2 and 
LOC105375992, 
LOC100506532) 

rs17557796, rs9301365, 
rs959144, rs206028  

0.798  0.802  0.689 5.99E–07 

(near genes ELAVL2 and 
LOC105375992, –, PXMP4) 

rs878698, rs1796518, 
rs10961303, rs17557796  

0.798  0.802  0.650 5.10E–06 

(TBC1D7-LOC100130357, 
BTN2A2, near genes LINC00583 
and LOC101929507, near genes 
ELAVL2 and LOC105375992) 

rs878698, rs1796518, 
rs17557796, rs4537681  

0.796  0.800  0.677 2.14E–06 

(TBC1D7-LOC100130357, 
BTN2A2, near genes ELAVL2 
and LOC105375992, –) 

rs11934708, rs17557796, 
rs1925616, rs1548906  

0.796  0.800  0.653 5.64E–07 

(CXXC4-AS1, near genes ELAVL2 
and LOC105375992, near genes 
CTNNA3, LRRTM3 and 
LOC101928961, ADAMTS14) 

rs10758578, rs17557796, 
rs207036, rs2205637  

0.795  0.802  0.672 9.98E–07 

(GLIS3, near genes ELAVL2 and 
LOC105375992, –, –) 

rs17557796, rs9301365, 
rs959144, rs207036  

0.795  0.799  0.673 3.08E–06 

(near genes ELAVL2 and 
LOC105375992, –, PXMP4) 

rs7604762, rs7597006, 
rs17557796, rs930016  

0.794  0.798  0.655 1.43E–07 

(–, ZEB2, near genes ELAVL2 and 
LOC105375992, 
LOC105370805) 

rs11934708, rs17557796, 
rs2147886, rs1548906  

0.793  0.799  0.644 9.85E–07 

(CXXC4-AS1, near genes ELAVL2 
and LOC105375992, near genes 
CTNNA3 and LRRTM3, 
ADAMTS14)  

Table 9 
The top ten 5-way interaction models using MDR (top 500 SNPs approach).  

Models Overall 
BA 

BA 
training 

BA 
testing 

p-Value 

rs11691402, rs10758578, 
rs17557796, rs2764808, 
rs1883105  

0.874  0.881  0.589 0.00025 

(LINC01317, GLIS3, near genes 
ELAVL2 and LOC105375992, 
near genes CTNNA3 and 
LRRTM3, –) 

rs6711065, rs6452399, 
rs2596501, rs1755779, 
rs1880769  

0.866  0.872  0.640 0.00020 

(GMCL1, ACOT12, HLA-B, near 
genes ELAVL2 and 
LOC105375992, CA10) 

rs6798458, rs2309949, 
rs10053765, rs179651, 
rs17557796  

0.866  0.871  0.653 0.00088 

(OSBPL10, STOX2, –, BTN2A2, 
near genes ELAVL2 and 
LOC105375992) 

rs2529489, rs1755779, 
rs10862418, rs959144, 
rs207036  

0.865  0.871  0.621 5.63E–05 

(IMMP2L, near genes ELAVL2 and 
LOC105375992, –, PXMP4, –) 

rs1050316, rs2309949, rs246718, 
rs1796518, rs17557796  

0.865  0.870  0.626 0.00373 

(MEF2D, STOX2, –, BTN2A2, near 
genes ELAVL2 and 
LOC105375992) 

rs7597006, rs6851877, 
rs17557796, rs276480, 
rs5920524  

0.864  0.871  0.614 0.00033 

(ZEB2, ANK2, near genes ELAVL2 
and LOC105375992, near genes 
CTNNA3 and LRRTM3, –) 

rs2596501, rs6466401, 
rs17557796, rs592637, 
rs892596  

0.863  0.869  0.627 6.76E–05 

(HLA-B, DOCK4, near genes 
ELAVL2 and LOC105375992, 
near genes MS4A10 and 
LOC105369322, ZNF180) 

rs11691402, rs759700, 
rs17557796, rs2764808, 
rs1880769  

0.860  0.868  0.530 0.00086 

(LINC01317, ZEB2, near genes 
ELAVL2 and LOC105375992, 
near genes CTNNA3 and 
LRRTM3, CA10) 

rs7604762, rs7597006, 
rs9812746, rs1755779, 
rs9301365  

0.860  0.866  0.613 0.00010 

(–, ZEB2, CNTN4, near genes 
ELAVL2 and LOC105375992, –) 

rs826009, rs9818965, rs1796518, 
rs4935126, rs4238639  

0.860  0.865  0.647 0.00017 

(–, –, BTN2A2, PCDH15, –)  
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